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ABSTRACT A
When texture features are measured on small subimages, they

are unreliable; but if we use large subimages, it is hard to
find subimages that are uniformly textured. This paper describes
a compromise approach: measure the features on small subimages,
and smooth the resulting feature values in such a way that
neighboring subimages that belong to differently textured regions
are unlikely to influence one another. When this is done, clas-
sification performance improves substantially. Improvement
is also obtained when the subimages are classified probabilisti-
cally and relaxation is used to adjust the class probabilities.
The problem of choosing a window size that minimizes overall
misclassification probability is also discussed.
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1. Introduction C)I u
Given a set of image windows, eahconsisting of a single

texture, the problem of texture classification is to classify

the windows into texture types based on a set of feature mea-

surements. A wide variety of statistical features can be used

for texture classification; see [11 for a survey.

To obtain good classification performance, texture features

should-be computed for windows of adequate size, typically 64 by

64 pixels. If smaller windows are used, the feature values be-

come unreliable, and classification performance deteriorates.

However, the size of the windows required for reliable classifi-

cation poses a problem when we try to analyze the textures on a

given image; the larger the windows used, the fewer of them will

fit inside the uniformly textured regions on the image, so that

it becomes difficult to obtain sufficient numbers of uniformly

textured samples.

This problem can be alleviated, to a substantial extent, by

using small windows, and smoothing the texture feature values

before using them for classification. As an alternative to

iterative smoothing, one can use the initial feature values to

probabilistically classify the windows and then use a relaxation

scheme to adjust the class probabilities.

Sections 2-4 show how interactions between windows of a

given size, in the form of iterative local smoothing or probabi-



listic relaxation, can be used to improve the reliability of

texture features. Section 5 discusses the window sizes that

should be used to minimize the number of misclassified pixels.



2. Data and features

2.1 Image data

In each experiment, a 512 by 512 pixel image was used,

composed of two texture types with the 450 diagonal as the

dividing line. Thus each image consists of 56 windows of size

64 by 64 that represent pure texture types (28 of each), plus

8 mixed windows lying on the diagonal. If we use windows of

size 32 by 32 (divide each 64 by 64 window into four quadrants)

we have 120 pure windows of each type and 16 mixed windows;

while if we use size 16 by 16, we have 496 pure windows of each

type and 32 mixed windows. Note that the mixed area is reduced

as the windows get smaller; the number of pixels belonging to

mixed windows is 215 for 64 by 64's, 214 for 32 by 32's, and 213

for 16 by 16's.

In this study we used three LANDSAT geological terrain types,

Mississippian limestone and shale (M), Pennsylvanian sandstone

and shale (P), and Lower Pennsylvanian shale (L). Thus there

were three 512 by 512 images, one containing each pair of terrain

types (M and P, M and L, L and P). These images are shown in

Figures 1-3.

Since texture feature values are computed for each indivi-

dual window, we histogram flattened each 64 by 64 pure window,

as well as the upper and lower pure triangles of each 64 by 64

mixed window on the diagonal, to remove any effects of unequal
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brightness and contrast. We did not flatten the 32 by 32

or 16 by 16 windows individually; the 32 by 32 flattened values

would be quite similar to the 64 by 64 flattened values, and

the 16 by 16 windows are somewhat too small for flattening.



2.2 Texture features

The texture feature used was the second-order gray level

statistic "CONTRAST" i], which is the moment of inertia of the

cooccurrence matrix about its main diagonal; it was measured

for a one-pixel displacement in the horizontal direction. The

CONTRAST feature values were calculated for each of the 1024

16 by 16 windows. A 32 by 32 window is made up of four 16 by 16

quadrants. If we assume that border effects are minimal, then

instead of calcluating the CONTRAST feature value from the co-

occurrence matrix for each 32 by 32 window, we can obtain the

feature value by averaging the values for the 16 by 16 windows

in each of its four quadrants; and similarly, we can obtain it

for a 64 by 64 window by averaging the four corresponding 32 by

32 window values. A comparison study showed that the discrepancy

between these two methods was minimal, and the computationaaly

cheaper method was therefore used.

The mean 1i and standard deviation a of the feature values

for the windows of each size in each class are given in Table 1.

These P and a values define a Gaussian probability density for

each class and each size. We used these densities in conjunction

with Bayes' theorem, to compute the probability that each window

belongs to each of the two classes,

Prob(CiJx) Prob(xJC) i = 1,2,Prob(xlC I) + Prob~xiC 2 )

and to classify the window according to the greater of these



probabilities. Since the densities overlap, these maximum-

likelihood classifications are not all correct. The error

rates, defined to be the percentages of unmixed windows that

were misclassified, are shown in the first row (iteration 0)

of Table 2. The error rate is based on the unmixed windows

since the mixed windows on the diagonal always have 50% error,

no matter which way we classify them.



3. Smoothing technique

A smoothing process was iteratively applied to the feature

values by selectively averaging the value measured for a given

window with the values for some of the neighboring windows.

For the windows along the image borders, it is assumed that there

are extra rows and columns of windows outside the image whose

feature values are the same as those of the windows on the border,

as shown in Figure 4.

The averaging should be done in such a way that the neighbors

used are likely to have the same texture as the given window.

Image smoothing techniques such as median filtering (value re-

placed by the median of the feature values in the neighborhood)

[21 and Ekschemes (average with the k neighbors whose feature

values are closest to those of the given window) [3] with k s 5

have the desired behavior, namely, no problems arise for windows

near the border between the two textures.

Under both the median filtering and E 5 smoothing process, the

variability of the values within each class rapidly decreases;

this results in substantially reduced error rates when the windows

are classified on the basis of their smoothed values. Table 2

shows the error rates when applying the E 5 smoothing process to

the images in Figures 1-3. We see that for the 64 by 64 windows,

the error rate is reduced to almost zero immediately,

while for the smaller windows, it is reduced to a level usually

achievable only through the use of larger windows.



In the above results, the error rates were calculated on

the basis of the mean and standard deviation of the smoothed

values for each window size of each texture type, which defines

updated Gaussian distributions for each iteration. Another pos-

sibility would be to use the Gaussian distributions derived from

the original unsmoothed image. This would mean that the initial

feature values are used as training samples and the smoothed

values are test samples, while updating the Gaussians at each

iteration means that the smoothed values are used both as the

training and testing samples. Table 3 shows the error rates de-

rived from non-updated Gaussians for the three images. In-

terestingly, the results are about as good as those obtained

with updating, and the improvement is still very good, except

for the 64x64 ML case, where the error rate first drops to zero

and then increases again. It should be pointed out, however,

that for such large windows, it is not meaningful to iterate the

smoothing process more than a few times, since there are so

few windows in the array.

Tables 4 and 5 show the error rates with and without updating

the means and standard deviations when median filtering, rather

than E5 , is used; the results are even better than those in

Tables 2 and 3. For comparison purposes, Table 6 shows the

error rates obtained when we smooth the feature values by

averaging the value for each window with the value for all 8

neighboring windows (i.e., E ). Problems arise for the windows



near the diagonal border between the two texture types since

such windows have five neighboring windows of the same texture

type, but one of the other type and two of mixed types. This

border effect is more significant for the larger windows since

the percentage of these "problem windows" is higher, 25% for

the 64 by 64 level, 12.5% for 32 by 32, and 6.25% for 16 by 16.

This effect of this problem can be seen from the error rates in

Table 6. One would expect the error rate for the 64 by 64 win-

dows to be less than that for the 32 by 32's since the feature

values are more reliable. Here, however, after 4 iterations,

the error rate for the 64 by 64 windows was worse than that for

the 32 by 32 windows.



4. Probabilistic relaxation

An alternative to iterative smoothing is to use the initial

feature values to probabilistically classify the windows and

then use a relaxation scheme to adjust the class probabilities

for each window according to the class probabilities of its

neighbors and the compatibilities between its class and its

neighbors' classes. There are two probabilistic relaxation

schemes, that initially introduced by Rosenfeld, Hummel, and

Zucker [4], and that recently introduced by Peleg [5). They

used different class probability updating rules and different

compatibility coefficient calculations. Tables 7 and 8 show

that applying the relaxation schemes resulted in a reduced error

rate. Note that the initial error rates are different from

those in Tables 2-6 since no extra border windows were assumed

and hence the windows at the image borders were not used in

the calculation of the error rates.

The performance of the two relaxation schemes are comparable;

the Rosenfeld, Hummel and Zucker method did slightly better

for two of the images. For all three samples, the relaxation

schemes do not work as well as smoothing, or at least do not

converge as quickly. it should be mentioned that in analogous

studies of pixel classification based on spectral signatures,

relaxation gave better results than smoothing [6].



5. Window sizes

As pointed out in Section 1, texture feature values measured

on small windows are not reliable, but using small windows has

the advantage that.more of them can fit inside a uniformly tex-

tured region. Moreover, the smaller windows can get closer to

the border of the two texture types in the sense that fewer

pixels are in the mixed windows, which automatically have half

the pixels misclassified. The percentage of misclassified pixels

is (half of the number of pixels in mixed windows + the number

of pixels in the pure windows times window error rate) divided

by the total number of pixels. Table 9 shows the percent mis-

classified pixels for each size window both initially and after

up to 12 iterations for each sample based on the error rates in

Table 3. Initially, 64 by 64 windows give fewer misclassified

pixels; but after up to 12 iterations, the least number of mis-

classified pixels is given by 32x32 windows in two cases and by

16x16 windows in the other case.



6. Concluding remarks

This study shows that both iterative smoothing and relaxa-

tion processes improve the reliability of texture features mea-

sured over windows of different sizes. The higher rate of mis-

classified pure windows for smaller size windows is compensated

by fewer pixels belonging to the mixed windows on the border of

the two textures, so that in many instances, fewer pixels are

misclassified when 32 by 32 windows are used instead of 64 by 64.

In this experiment, only features derived from windows of a

single size were allowed to interact. Chen and Pavlidis (7]

have described a split-and-merge method of texture segmentation

in which feature values measured on windows of different sizes

are compared. If the values for all four quadrants of a window

are sufficiently close to the values for the entire window, then

the window need not be subdivided; otherwise, we split it into

quadrants. It would be desirable to combine their method of

"vertical" interaction between the feature values with our

"horizontal" interaction method.
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Terrain Type Window Size

64 by 64 32 by 32 16 by 16

Mississipian 11 15.32 15.33 15.32

a 1.50 2.21 3.44

Pennsylvanian 1 11.66 11.67 11.68

a 1.20 1.75 2.65

Lower Pennsylvanian v 18.53 18.53 18.46

a 1.14 2.19 3.64

Table 1. Means and standard deviations for the terrain types.

M/ iL L/P
Window Size Window Size Window Size

Iteration 64x64 32x32 16x16 64x64 32x32 16x16 64x64 32x32 16x16

0 9 19 28 11 23 33 0 4 15

1 2 9 18 0 10 25 0 0 5

2 2 7 16 0 5 21 0 0 3

3 2 7 15 0 3 18 0 0 3

4 2 6 14 0 2 17 0 0 2

5 2 6 14 0 3 17 0 0 2

6 2 6 13 0 3 16 0 0 1

7 2 5 13 0 3 15 0 0 1

8 2 6 12 0 2 15 0 0 1

9 2 5 12 0 2 14 0 0 1

10 2 5 12 0 2 14 0 0 1

11 2 5 11 0 2 13 0 0 1

12 2 5 11 0 2 13 0 0 1

Table 2. Error rates (%) for the images in Figures 1-3 using

the E5 smoothing method.



M/P M/L L/P

Window size Window size Window size

Iteration 64x64 32x32 16x16 64x64 32x32 16x16 64x64 32x32 16x16

0 9 19 28 11 23 33 0 4 15

1 2 8 19 2 9 26 0 0 5

2 2 5 16 0 5 23 0 0 2

3 2 4 14 2 3 21 0 0 2

4 2 4 14 4 2 20 0 0 2

5 2 3 13 4 3 19 0 0 2

6 2 3 13 5 2 19 0 0 1

7 2 3 13 5 2 19 0 0 1

8 2 3 12 7 2 19 0 0 1

9 2 3 12 7 2 18 0 0 1

10 2 3 11 7 2 19 0 0 1

11 2 3 11 7 2 18 0 0 1

12 2 3 11 7 2 18 0 0 1

Table 3. Analogous to Table 2, but without updating the means
and standard deviations at each iteration.

M/P M/L L/P

Window Size Window Size Winaow Size

Iteration 64x64 32x32 16x16 64x64 32x32 16x16 64x64 32x32 16x16

0 9 19 28 11 23 33 0 4 15

1 0 5 16 0 5 19 0 0 3

2 0 1 13 0 2 14 0 0 2

3 0 1 11 0 2 10 0 0 2

4 0 2 10 0 1 7 0 0 1

5 0 2 9 0 0 6 0 0 1

6 0 2 9 0 0 6 0 0 1

7 0 1 9 0 0 5 0 0 1

8 0 1 9 0 0 4 0 0 1
9 0 1 9 0 0 4 0 0 1

10 0 1 9 0 0 4 0 0 1

11 0 1 8 0 0 4 0 0 1

12 0 1 8 0 0 4 0 0 1

Table 4. Analogous to Table 2, using median filtering rather

than E5.



M/P M/L L/P

Window Size Window Size Window Size

Iteration 64x64 32x32 16x16 64x64 32x32 16x16 64x64 32x32 16x16

0 9 19 28 11 23 33 0 4 15

] 0 4 18 0 5 18 0 0 3

2 0 1 15 0 2 13 0 0 2

3 0 1 14 0 1 11 0 0 2

4 0 1 14 0 0 9 0 0 1

5 0 1 13 0 0 8 0 0 1

6 0 1 13 0 0 7 0 0 1

7 0 1 13 0 0 7 0 0 1

8 0 1 13 0 0 7 0 0 1

9 0 1 13 0 0 7 0 0 1

10 0 1 12 0 0 7 0 0 1

11 0 1 12 0 0 7 0 0 1

12 0 1 11 0 0 7 0 0 1

Table 5. Analogous to Table 3, using median filtering

rather than E5 .

Window Size

Iteration 64x64 32x32 16x16
0 9 19 28

1 2 5 15

2 5 4 10

3 4 4 9

4 5 4 8

5 7 4 7

6 7 5 7

7 7 5 7

8 7 5 7

9 7 5 7
10 7 5 6

11 9 5 6

12 9 6 6

Table 6. Same as first part of Table 3 using averaging

with all neighbors.



M/P M/L L/P
Window Size Window Size Window Size

Iteration 64x64 32x32 16x16 64x64 32x32 16x16 64x64 32x32 16x16

0 7 19 28 13 25 35 0 4 15

1 3 15 26 3 22 33 0 1 10

2 0 11 25 0 20 33 0 1 6

3 0 9 23 0 18 32 0 1 4

4 0 7 21 0 18 32 0 1 3

5 0 5 20 0 17 31 0 1 3

6 0 4 19 0 16 31 0 1 2

7 0 3 17 0 16 30 0 1 2

8 0 3 16 0 13 30 0 1 2

9 0 3 15 0 13 30 0 1 2

10 0 3 14 0 12 30 0 1 1

11 0 3 14 0 12 30 0 1 1

12 0 3 13 0 12 29 0 1 1

Table 7. Error rates (%) for the images in Figures 1-3

using the Rosenfeld, Hummel and Zucker relaxation scheme.



M/P M/L L/P

Window Size Window Size Window Size

Iteration 64x64 32x32 16x16 64x64 32x32 16x16 64x64 32x32 16x16

0 7 19 28 13 25 35 0 4 15

1 7 17 27 0 23 34 0 2 12

2 0 13 26 7 20 33 0 1 9

3 0 11 25 0 20 33 0 1 7

4 0 9 23 0 18 32 0 1 5

5 0 8 22 0 18 32 0 0 3

6 0 7 21 0 17 32 0 0 2

7 0 4 20 0 17 31 0 0 2

8 0 4 19 0 16 31 0 0 2

9 0 3 18 0 16 31 0 0 2

10 0 3 17 0 15 30 0 0 1

11 0 3 16 0 13 30 0 0 1

12 0 3 15 0 13 30 0 0 1

Table 8. Same as Table 7 except using the Peleg relaxation scheme.

M/P M/L L/P

Window Size Window Size Window Size

64x64 32x32 16x16 64x64 32x32 16x16 64x64 32x32 16x6

Before
Smoothing 14 21 29 16 25 34 6 7 16

After
Smoothing 8 5 12 6 5 19 6 6 2

Table 9. Pixel Error Rates (%)
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are classified probabilistically and relaxation is used to adjust
the class probabilities. The problem of choosing a window size
that minimizes overall misclassification probability is also
discussed.
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